AI และการเรียนรู้ของเครื่องสามารถตรวจจับพฤติกรรมการพนันที่มีความเสี่ยง

โดยการใช้ประโยชน์จากความก้าวหน้าในด้านปัญญาประดิษฐ์และการเล่าเรียนของเครื่องเพื่อสร้างอัลกอริทึมวิธีการทำนายสำหรับเพื่อการพนันอย่างรับผิดชอบ ผู้ประกอบการคาสิโนสามารถลดอันตรายต่อผู้เล่นได้โดยการกำหนดค่าการขัดจังหวะการเล่นเมื่อตรวจเจอพฤติกรรมที่มีความเสี่ยง ตามที่ผู้เชี่ยวชาญในAIกล่าว

Global Gaming Expo ได้สำรวจเรื่องนี้เมื่อสัปดาห์ที่แล้ว

ด้วยเซสชันเกี่ยวกับเทคโนโลยีที่มีศักยภาพช่วยเพิ่มความปลอดภัยและความสมบูรณ์ของการเล่นสำหรับผู้ใช้

วิธีหนึ่งที่สามารถทำได้ก็คือการสร้างแรงเสียดทานในรูปแบบของข้อความ อีเมล และการแจ้งเตือนแบบพุชไปยังผู้เล่นหรือเป็นการเตือนแบบบริการตนเองแก่ผู้เล่นเกี่ยวกับตัวเลือกการเล่นที่ปลอดภัยกว่า

Mike Reaves หัวหน้าฝ่ายสถาปัตยกรรมโซลูชั่นทั่วทั้งโลกสำหรับเพื่อการพนันและการเล่นเกมของ Amazon Web Services กล่าวว่าพวกเขาใช้แมชชีนเลิร์นนิงเพื่อตรวจจับพฤติกรรมปัญหาสำหรับการเล่นเกมและ พยายามเป็นกำลังเพื่อความดี

Reaves กล่าวว่าขณะนี้พวกเขากำลังดำเนินการในสองระบบในพื้นที่การเดิมพันและเกมเพื่อช่วยเหลือซัพพลายเออร์ผู้ประกอบการและหน่วยงานควบคุมดูแลประการแรกคืออัลกอริทึมวิธีการทำนายที่ดูตัวบ่งชี้ที่แตกต่างกันรวมไปถึงข้อมูลบัญชีทางการเงินและข้อมูลการเดิมพัน

พวกเราสามารถสร้างแบบจำลองการเรียนของเครื่องโดยใช้ข้อมูลของผู้ปฏิบัติงานเพื่อพยายามตรวจค้นว่าพฤติกรรมการเดิมพันอาจกลายเป็นปัญหาเมื่อใด รีฟส์กล่าวเมื่อเป็นเช่นนั้น สิ่งที่เจ๋งที่สามารถทำได้ด้วยเทคโนโลยีในทุกวันนี้เป็นคุณสามารถแจ้งเตือนแบบเรียลไทม์เพื่อป้องกันไม่ให้เกิดอันตรายในเวลานั้นในสมัยก่อน คุณได้รับรายงานและมีความเห็นว่าหาย 10,000 ดอลลาร์ และคุณไม่สามารถทำอะไรได้มากนัก เว้นแต่โทรหาพวกเขาแล้วดูว่าพวกเขาเรียบร้อยแล้วและเสนอเครดิตให้พวกเขาหรือไม่

Reaves กล่าวว่า AWS ยังดำเนินงานเกี่ยวกับโซลูชันการปรับแก้ส่วนบุคคลโดยใช้AIและการเรียนรู้ของเครื่องอย่างที่ผู้คนบางทีอาจมองเห็นใน Amazon Prime Video หรือไซต์อีคอมเมิร์ซ Amazon ซึ่งผู้คนได้รับคำแนะนำเกี่ยวกับสิ่งที่ควรจะซื้อ

เทคโนโลยีแบบเดียวกันนี้สามารถใช้เพื่อสำหรับในการพนันและการพนันเพื่อเสนอการเดิมพันที่ใครบางคนสนใจ รีฟส์กล่าวมีความสมดุลที่ดีระหว่างการให้คำแนะนำแก่ใครบางคนและการพยายามป้องกันการเล่นเกมที่มีปัญหา แต่พวกเรากำลังพยายามนำมาใช้แมชชีนเลิร์นนิงกับปัญหาประเภทนี้ทั้งหมดและได้ระบุวิธีแก้ปัญหาที่มีประโยชน์

Paula Murphy ผู้จัดการฝ่ายพัฒนาธุรกิจที่ MindwayAIกล่าวว่า

การเรียนรู้ของเครื่องเป็นชุดย่อยของAIและสิ่งที่พวกเขาทำที่ Mindway เป็นสอนอัลกอริทึมเพื่อจำลองการตัดสินใจของคนเรา

สำหรับบางอย่างตัวอย่างเช่นการพนันที่มีปัญหา เราดูทุกๆ10 นาทีของการเล่นคาสิโนที่สมุดกีฬาและมือโป๊กเกอร์และรวบรวมรูปแบบพฤติกรรมที่มองดูไปที่เครื่องหมายเดียวกันบางส่วน เมอร์ฟี่กล่าวเหตุเพราะเราใช้นักจิตวิทยามนุษย์ผู้เชี่ยวชาญ พวกเขาสามารถนำการวิเคราะห์ตามบริบทที่คุณไม่สามารถรับได้หากคุณกำลังมองไปที่เครื่องหมายเรากำลังติดตามผู้เล่นเจ็ดล้านคนครึ่งอย่างต่อเนื่องสำหรับโอเปอเรเตอร์ที่เราดำเนินงานด้วย

Madeleine Want รองประธานฝ่ายข้อมูลของ Fanatics Sportsbook กล่าวว่าความยากลำบากในการทำนายปัญหาการเดิมพันคือมันเป็น ปัญหาข้อมูลเริ่มด้วยผู้ที่บอกคุณว่าต้องมองหาอะไรโดยระบุผู้พนันที่มีปัญหาที่ได้รับการยืนยันจากอดีต

คุณสร้างเครื่องมือและอัลกอริทึมเพื่อเรียกใช้ผ่านฐานลูกค้าของคุณเอง Want กล่าวเราถาม ใครมีพฤติกรรมคล้ายกับผู้ที่พวกเราอาจมองไม่เห็น?อะไรคือต้นสายปลายเหตุที่เกี่ยวข้องกันที่ทีมเล่นเกมแบบรับผิดชอบของเราไม่แนะนำอย่างเชิงรุก เนื่องจากว่าพวกเขาไม่รู้ตัว?อย่างไรก็ตามอัลกอริทึมได้มองเห็นพวกเขาและสามารถนำพฤติกรรมของลูกค้าคนอื่นที่ตกผ่านรอยแตกเราเป็นคนใหม่ในพื้นที่นี้และอาศัยอยู่ในห้ารัฐกับแม่มีอีกมากมายที่จะมาอีกสิ่งหนึ่งที่แมชชีนเลิร์นนิงต้องการเป็นข้อมูลจำนวนมาก และเมื่อคุณไม่ได้อยู่มานานและอยู่ในกลุ่มย่อยเพียงเล็กน้อยแค่นั้น คุณไม่มีข้อมูลเพียงแต่พอที่จะฝึกโมเดลการเรียนรู้ของเครื่องที่หิวมาก

Want กล่าวว่าวิถีทางที่พวกเขาใช้ร่วมกับ AWS คือการสร้างกรอบการปฏิบัติงานของวิธีการป้อนข้อมูล เพื่อให้สามารถใช้สำหรับแบบจำลองดังกล่าวเมื่อพวกเขามีข้อมูลในปริมาณที่เพียงพอ พวกเขาจะเปลี่ยนไปใช้วิธีการศึกษาของเครื่อง

อีกเหตุผลหนึ่งที่นี่เป็นปัญหาข้อมูลที่ยอดเยี่ยมแบบนี้เป็นพวกเราใช้หนทางสำหรับการแปลสัญชาตญาณของคนเราเป็นกฎและบอกระบบว่าจะประพฤติตนอย่างไร Want กล่าวทั้งหมดนี้มีส่วนช่วยสำหรับในการรวบรวมข้อมูลที่จะใช้สำหรับเพื่อการฝึกอบรมและให้คะแนนแนวทางการเรียนรู้ของเครื่องในอนาคตข้อมูลเป็นส่วนประกอบขนาดเล็กหนึ่งมันคือสิ่งที่คุณทำกับข้อมูลนั้นเมื่อคุณมีข้อมูลที่เกิดขึ้น

Becky Harris อดีตประธานคณะกรรมการควบคุมการเล่นเกมเนวาดาและผู้มีชื่อเสียงด้านการเล่นเกมและการเป็นผู้นำที่สถาบันการเล่นเกมนานาชาติที่มหาวิทยาลัยเนวาดาลาสเวกัส กล่าวว่าหนึ่งในความท้าทายคือแอปพลิเคชันพวกนี้ดำเนินการตามเขตอำนาจศาลตามเขตอำนาจศาลและการเลือกข้อมูลตามผู้ปฏิบัติงานที่ แตกต่างกันอย่างมากจวบจนกระทั่งอุตสาหกรรมจะสะดวกสบายมากขึ้นสำหรับในการใช้AIหน่วยงานกำกับดูแลเกมจะลังเลที่จะพึ่งพิงสิ่งนั้น เธอกล่าว

เหมือนกันกับทุกอย่างสำหรับเพื่อการพนันที่มีความรับผิดชอบและมีปัญหา เครื่องมือและเครื่องมือที่หลากหลายมีประโยชน์มากขึ้นและเกิดเรื่องที่ดีที่จะสามารถระบุผู้ที่กระทำในลักษณะเฉพาะและช่วยแจ้งให้พวกเราทราบ

แฮร์ริสกล่าวว่าทนายความในเธอมีคำถามเกี่ยวกับสิทธิพลเมืองของมนุษย์และสิ่งที่หน่วยงานกำกับดูแลยอมรับในแง่ของการปิดตัวผู้เล่นออกมาจากกิจกรรมที่พวกเขาต้องการมีส่วนร่วม

นี่ยอดเยี่ยมในสภาพแวดล้อมมือถือแต่ว่าอุตสาหกรรมคาสิโนของเราส่วนใหญ่เป็นแบบภาคพื้นดิน ดังนั้นแอปพลิเคชันสำหรับสิ่งนั้นอยู่ที่ไหน?แฮร์ริสกล่าวฉันสามารถมองเห็นการติดตามผ่านการ์ดของผู้เล่นและบางทีเทคโนโลยีนี้อาจมาถึงจุดที่มีโอกาสแบบเรียลไทม์ในAIเพื่อระบุผู้ที่มีส่วนร่วมในพฤติกรรมที่เป็นอันตรายAIด้วยตัวเองไม่ใช่คำตอบพวกเราจะต้องดูคันโยบายที่แตกต่างกันมากมายการสนทนาที่มีปัญหาการพนันไม่สมควรเริ่มต้นและจบลงด้วยAIพวกเราควรดู มันเข้ากับความตลอดที่ไหนและพวกเรามีความมั่นใจมากเพียงแค่ไหน